
www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 4

https://isedj.org/; http://iscap.info

Using a Concept Map to Represent

the Composition of Knowledge in an
Introductory Programming Course

Pratibha Menon
menon@calu.edu

Lisa Kovalchick

kovalchick@calu.edu

Department of Mathematics,

Computers and Information Systems
California University of Pennsylvania

California, PA 15419

Abstract

Concept mapping, a tool originally developed to facilitate student learning by organizing and
visualizing key concepts and their relationships, can also be used to represent the composition of the
knowledge contained in a course. In this paper, the authors describe a specific application of concept
mapping to help instructors and students visualize the knowledge contained in an introductory
programming course of an undergraduate Computer Information Systems program. The authors show

how representing the knowledge structure of a course using a concept map can enable the faculty to
assess the breadth and depth of the knowledge imparted through the course. The authors discuss how
a concept map that depicts the composition of a course can function as a useful instructional tool to
assess and improve the quality of instruction that may enable meaningful learning among students.
Keywords: Concept-Map, Knowledge-Representation, Knowledge-Model, Programming, Course,
Nodes, Links

1. INTRODUCTION

Any person who wishes to reason about his/her
world comes across an inescapable fact that
reasoning is a process that goes on in the mind

of the person, while the very thing she/he
wishes to reason exists outside the mind. This
unavoidable dichotomy is the fundamental

reason as to why we need some form of
representation, or model, of the world about
which we need to reason. This representation
exists as a substitute for the real thing about

which we wish to reason. Any operation that we
wish to perform on the real thing can be
performed on the representation and reasoning
itself will be the surrogate for the action that we
want to perform on the real thing.

In this paper, our focus is on creating a
representation model for the knowledge
contained in an introductory programming
course and to use this representation to reason
and draw inferences about various structural

attributes of the knowledge contained in a
course.

In order to be able to use a knowledge model,
one needs to clearly know the intended purpose
of this model, and the attributes of the real
world that this model incorporates. In this

paper, the proposed knowledge representation
model intends to model the knowledge contained
in the course as a network of concepts that the
learner should master to result in a meaningful
learning experience.

mailto:menon@calu.edu
mailto:kovalchick@calu.edu

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 5

https://isedj.org/; http://iscap.info

By selecting a knowledge representation model -

which models a course as a network of concepts,
we make an ‘ontological commitment’ that
brings to focus a certain aspect of the course

and blurs several other facets of the course. For
example, the knowledge model does not model
all the course contents explicitly, nor does it
model the time required to learn concepts, all of
which are important facets in the design of a
course and will depend on the specific teaching
context. The proposed knowledge representation

model purely focuses on the skeletal structure of
the knowledge base of the course.

Different forms of knowledge representations,
known as ‘ontologies’, have been extensively
used to model domain knowledge for teaching

and learning purposes, primarily in the area of
Personalized Learning Systems (Brusilovsky et
al., 2004(a); Brusilovsky et al., 2004(b); Lee &
Segev, 2012). According to one of the definitions
“an ontology is a hierarchically structured set of
terms for describing a domain that can be used
as a skeletal foundation for a knowledge base"

(Swartout et al., 1997). Unlike a taxonomy that
classifies and organizes knowledge components,
an ontology specifies the knowledge components
and their relationships in greater detail.

Ontologies have been used to provide common
vocabulary for query retrieval in a case-based

recommendation strategy for personalized
access to learning objects (LOs) in a learning

system (Gomez & Diaz, 2009; Brusilovsky et al.,
2004(a); Brusilovsky et al., 2004(b); Lee &
Segev, 2012; Wang & Mendori, 2012). In such
learning systems, we observe a knowledge

model that depicts a tree-like organization of the
concepts and/or learning objects. For example,
Appendix A, shows a hierarchical tree-like
structure used to create an ontology for the C
Programming language (Sosonovsky &
Gavrilova, 2006). A five-step algorithm has been
proposed by Gavrilova et. al, to develop

teaching Ontologies (Gavrilova et al., 2005).
This algorithm has also been used to develop
teaching Ontologies for the Java programming
language (Ganapati et al., 2011). In all these

examples, the Ontology categorizes the units of
knowledge in the form of a tree-like hierarchy.
However, our goal of creating the knowledge

model is to organize and inter-relate the
concepts, in way that will make it possible for
students to learn how to write computer
programs. Such a knowledge model may contain
cross-links between the concepts and may result
in a non-hierarchical structure.

In the proposed knowledge model, we depict
such cross-links, and in this way, create a

generalized network-like structure of organizing

concepts. To organize and represent the key
concepts of a course in a network-like manner,
we propose to use a concept map based

approach.

The design methodology of concept maps was
first introduced by Joseph Novak by re-
examining Ausubel’s learning theory that
differentiates rote learning from meaningful
learning (Ausubel, 1963; Ausubel, 1968). The

fundamental idea in Ausubel's cognitive
psychology is that meaningful learning occurs by
the assimilation of new concepts and
propositions into the existing conceptual
frameworks held by the learner (Ausubel, et.al,
1978). Novak argues that knowledge

construction is nothing other than a relatively
high level of meaningful learning, and that
concepts and propositions are the building
blocks for knowledge in any domain (Novak &
Gowin, 1984; Novak, 2002). Novak compares
concepts to atoms, and propositions to
molecules. Just as molecules are formed by

atoms and the valid relationships that bond
them, propositions are formed by valid
relationships among concepts. For example,
consider the two concepts car and engine. The
proposition can be an assertive statement such
as, car has engine (see Figure 1). Here the
linking word ‘has’ relates the two concepts, car

and engine (Novak & Canas, 2008).

Figure 1. Example of depicting a
proposition using nodes and link

Concept maps have been used as a scaffold for
cognitive processing of knowledge in a given

subject area (O’Donnell, et.al, 2002). Concept
maps have found a wide variety of applications
in the development of curriculum and instruction
(Allen et al., 1993; Edmondson, 1993). Concept

maps may be linked to high level learning
objectives to create a ‘finer-grained’ learner

model in an introductory programming course
(Kumar, 2006). Concept maps have been used
to represent the domain model, and also as an
overlay student model in the design of tutoring
systems (Mabbott & Bull, 2004). Concept
mapping exercises and their scoring methods
have been developed for testing students’

Car Engine

has

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 6

https://isedj.org/; http://iscap.info

knowledge in an introductory programming

course (Keppens & Hays, 2008).

The scope of this paper does not address the use

of a concept map as a way to measure the
learner’s ability to create a computer program.
Neither does the paper address the ability of
students to construct their own concept maps.
In this paper, a concept map is an instructional
tool that will help instructors to represent the
knowledge required to write procedural style

computer programs in an introductory
programming course for an undergraduate
Computer Information Systems (CIS) program.

The figure shown in Appendix B, depicts a
complete concept map developed by the

authors. We explain the key design features of
this concept map that can help the course
instructors and students to understand the inter-
relatedness of key concepts covered by course.
We introduce some of the course quality
attributes that can be inferred from the concept
map. We also provide a sample implementation

of a concept map based instructional strategy in
a programming course. Finally, we provide a
critique on the utility of the proposed concept
map as an instructional tool to analyze the
composition of the course contents to improve
the quality of the course.

2. CONCEPT MAP OF AN INTRODUCTRY
PROGRAMMING COURSE

The figure shown in Appendix B depicts the
concept map representation created by the
authors, for an introductory procedural style,

Java programming course of an undergraduate
CIS program. The concepts (i.e., nodes depicted
in the figure) are extracted from the syllabus
prescribed by the university approved course
curriculum. The links that represent the
relationship between the concepts were created
by the authors to show the relationships

between the key concepts.

The figure shown in Appendix C, depicts a partial
view of the course syllabus. It can be inferred

from the syllabus that there is a great emphasis
on using programming concepts to solve
problems. Additionally, the syllabus focuses on

using case studies to outline the pseudocode
problems, for which students are expected to
create a programming solution. To represent the
relationship that exists between problem solving
and program structure, the concept map is
divided into two clusters – the concepts that are

part of the Problem Structure, and the concepts
that describe the Programming Structure. This

high level division follows the common teaching

practice of many programs, where students are
first made to analyze the problem, write
pseudocode, and only then, write the computer

program.

2.1 Mapping the Course Composition
As previously mentioned, the intent of the
knowledge representation scheme is to map the
composition of the course’s subject area as a
network of concepts and their interrelatedness.

The key concepts to be covered by the course
are identified and represented as distinct nodes
in the concept map. The next step is to connect
these concepts using proper linking phrases that
can meaningfully convey the relationship
between concepts that the instructor must

convey through course contents and the student
must learn, to successfully meet the course
objectives.

In the concept map shown in the figure in
Appendix B , the links between the concepts are
primarily labeled using the phrases – ‘is a type

of ‘, and ‘has’. It is typical for course domain
ontologies to focus on ‘is-a-type’ and ‘has’/’part-
of’ relationships between concepts (Omez-
Albarran & Jimenez-Diaz, 2009; Sosnovsky &
Gavrilova, 2006) . However, it is to be noted
that concepts maps have no restriction on what
kind of meaningful phrases that can be used to

label the links.

The relationships indicated in the concept map
are read along the direction of the arrows. For
example, the relationship between Program and
Method(s) is read as, “A Program has (one or

more) Method(s)”. The relationships can be of
the ‘one to one’ type, or of the ‘one to many’
type. In a ‘one to many’ relationship, the
concept on the many side is written in plural
tense such as Method(s), or Expression(s). The
non-arrow side of the relationship is always
singular, and the arrow side of the relationship

can be singular or plural. If the arrow side of the
relationship is a plural, then the concept at the
arrow side will be indicated in plural tense.

The selection of meaningful phrases used to
label the relationships depends on the intent of
the concept map. Since the primary goal of the

concept map is to represent the course
composition, the words ‘has’ and ‘is a type of’
convey the composition, and choices of
composition, respectively.

For example, the concept map fragment in

Figure 2, shows how programs are composed of
some of the concepts. In this concept map

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 7

https://isedj.org/; http://iscap.info

fragment, a “program has (one or more)

method(s). A method is of type main method. A
method has (one or more) statement(s), and a
statement has/is of type expression(s).” This

chain of reasoning indicates a program is
composed of one or more methods, and a
method is, in-turn, composed of one or more
statement(s), and a statement is composed of
one or more expression(s). The ‘has’ relationship
indicates that one concept is composed of
another concept. There are two types of

relationships between statement(s) and
expression(s). A statement is always composed
of an expression and some statements only have
expressions (i.e., no loops, or branches, for
example).

Figure 2. A small subset of the course

concept map showing program composition

Figure 3. A Small subset of the course
concept map showing ‘is a type of’

inheritance relationship

The ‘is of type’ linking phrase indicates ‘choices
of composition’ that the learner must be able to

discern for a given problem. This kind of a
relationship indicates the need for the learner to
discern among several permissible options of
program or problem composition. For example,
the concept map fragment in Figure 3, shows
that every Statement has Expression(s), and an

Expression can be of many types (such as

Assignment, Arithmetic, Logical, Method call,
Boolean, and Break). From this one can infer
that to compose a statement, one will need to

discern among, and choose from, a set of
permissible expressions.

2.2 Mapping concept hierarchy
Even though a concept map has an overall
network-like structure, sections of the concept
map can define several types of tree-like,

hierarchical relationships between concepts.
Appropriate linking phrases can be used to
depict these hierarchical relationships. One such
hierarchical relationship, that we observe in the
concept map depicted in Figure 1, is that of the
concept of inheritance between what can be

called the ‘child’ and ‘parent’. The linking
phrase, ‘is a type of’ relates a ‘child’ concept, to
a ‘parent’ concept, as shown in Figure 4. For
example, the concepts named Selection and
Iteration are the child concepts of the parent
concept called Statement(s). A single parent
may have one or more child concepts and a child

concept may, in turn, be a parent to its own
child concept(s). For example, in addition to
being a child concept of Statement(s), the
Selection concept is a parent of the concepts
named if..else and Switch.

Figure 4: A small fragment of the course

concept map showing concept hierarchy

and inheritance

The ‘is a type of’ relationship indicates
‘inheritance’ of pre-requisite topics from the

parent node. For example, in Figure 4, the
concept called Statement(s) is composed of
several concepts such as Expression(s), Style,
Syntax, and Comments. All these pre-requisite
concepts are inherited by the child nodes –

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 8

https://isedj.org/; http://iscap.info

Selection and Iteration. This implies both

Selection and Iteration lessons require the
lesson on Expressions to be covered a-priori.

 It can be inferred that the parent concepts are
relatively more abstract, as compared to a child
concept. This means the child concept provides
more concrete course contents and learning
implementation of the parent concept. For
example, in Figure 3, the Parent concept called
Expression(s) are learnt in concrete forms as

Assignment expressions, Arithmetic expressions,
etc.

2.3 Inferring the Pre-Requisite Concepts
Each node in the concept map can be considered
as one lesson/topic of the course. For example,

a typical programming course has a topic called
Selection that will introduce the ways to write
‘if..else’ decision structures in the program.
Another example of a commonly taught topic is
that of writing various types of Expressions,
such as an expression for variable assignment,
an expression for arithmetic computation, etc.

Even though each lesson can be depicted as a
separate node in the concept map, these
concepts may require that the learner has
mastered one or more pre-requisite concepts.
For example, let us take the two concepts –
Selection and Expressions, as shown in Figure 4.

The two concepts are related to each other
indirectly, through the Statement(s) node. The

Statement(s) node is related to the
Expression(s) node through a ‘has’ relationship.
For example, to write an ‘if..else’ statement, one
needs to know how to write a Boolean

statement, that returns a value of true. This
return value of the Boolean expression will then
be used to trigger the code under the ‘if’ block.
An ‘if..else’ statement block also may contain
various arithmetic operations, or method calls.
Thus, the inference that an ‘if ..else’ statement
is composed of expressions, implies that the

lesson on expressions should precede the lesson
on Selection.

From the concept map shown in Appendix B, one

can infer the order, in which lessons need to be
taught, starting with the concepts that require
fewer pre-requisites. For example, the lessons

are typically taught in the following order: Data
Units—Variables and Constants (along with
primitive data types), Declaring variables,
Expressions, Writing statements that have
declaration and expressions, Selection
structures, Iteration structures, and Methods.

3. INFERRING THE QUALITY OF

KNOWLEDGE IMPARTED BY THE COURSE

The focus of the concept map presented in this

paper is to reason about the composition of the
introductory programming course designed to
teach programming to beginners. Therefore, we
will discuss how the structure of this composition
impacts the quality of the course.

3.1 The breadth of the course

The breadth, or the scope of the course can be
loosely defined as the number of topics covered
in a course, which is typically defined in the
course syllabus. The breadth of the course, as
depicted by a concept map, can be assessed by
the total number of concept nodes present in the

map. For the example, the concept map shown
in Appendix B, has 43concepts.

As discussed in the previous section, having a
web-like knowledge structure, does not prevent
creation of hierarchy, or levels of abstraction.
Some of the concepts, for example, the

Arithmetic expression, can be further split into
an expression with operators such as, addition,
subtraction, division, multiplication, and
modulus. Similarly, the concept called Primitive
Data Types can be split into integer, double,
character, String, Boolean, etc. In this case, the
breadth of the concept map will account for all

the child nodes that form the body of
knowledge.

The breadth of the course only counts the
number of concepts covered in the course, but it
does not convey how the course imparts

knowledge about the interconnectedness of
these concepts. The breadth does not convey
how densely, or sparsely interconnected these
concepts are, in the body of knowledge taught in
the course.

3.2 Depth of the course

Compared to the breadth of a course,
denseness, or depth, has always been perceived
as a qualitative measure that may depend on
the conceptual details taught and assessed for

each topic of the course. For example, a solution
to a ‘dense’ problem may require students to
meticulously reason and connect together

concepts acquired from several previously
taught topics in an accurate manner. This pre-
requisite knowledge may include concepts that
may be an integral part of the newly introduced
concept. The pre-requisites may also include
those concepts that that are alternatives to the

new concept and that the students may need to
discern correctly. A ‘dense’ problem packs and

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 9

https://isedj.org/; http://iscap.info

interconnects several concepts into the solution.

The ability of the learners to form a coherent
chain of reasoning that ties several concepts and
that allows the learner and pick and choose the

correct concepts leads to deeper learning. A
concept map explicitly depicts the links between
various concepts. Therefore, a solution to a
dense problem may require students to reason
along a ‘chain of links’ that connect various
concepts in the concept map.

Deeper learning occurs when students are able
to associate one concept to several other
concepts listed in the course. For example, a
simple Hello World program that is usually the
first program that a student may write, actually
binds 14 different concepts using the links

depicted in the concept map. Figure 5, depicts
those concepts. While it is possible and even
sometimes desirable for novice students to be
able to write an initial Hello World program
without reasoning through so many concepts,
this kind of learning will only promote superficial
and rote learning in the long run. Therefore, to

promote deeper learning, and mastery of
concepts, the learner should be provided with
instruction and practice activities that will teach
how to reason well by identifying the correct
concepts and their interconnectedness that can
explain the solutions to the problems.

Figure 5: A chain of concepts involved in a
simple “Hello World” program

Figure 6, shows the concepts and the chain of
reasoning involved in a simple program involving
arithmetic expressions. This program chains 26

concepts that form a small subset of the concept
map.

It is theoretically possible to create a problem
whose solution will involve the entire concept
map and requires students to reason through all

the concepts and links. Solutions to smaller

problems may constitute a smaller subset of the
concept map, comprised of fewer nodes and
links.

Figure 6: A chain of concepts involved in a
simple problem that performs addition on
two inputs and outputs the result

4.0 IMPLEMENTING A CONCEPT MAP BASED

COURSE DESIGN

The concept map depicted in Appendix B was
used to assess and re-design a 15-week course
on Java Programming. Initial assessment of the
course indicated the need to instruct in greater

detail the teaching of reasoning that goes into
composing a program. The course contents were
re-designed after adopting the concept map as
the course content schema. In this section we
reflect upon the implementation experience.

4.1 Assessment of Course Quality

The 15-week course on Java Programming
includes all the topics mentioned in the course

syllabus.

1) Intro to Java, writing a simple
program. Basic Input/Output.
Identifying errors, writing good

comments.
2) Intro to variables, identifiers,

assignment operator, and arithmetic
operations, using int and double
variables

Learning Path : 15 Concepts

Concept: Business Problem

Concept: Input/Output: Outputs Hello World

Concept: Functional requirements : To output Hello World

Concept: Sequence of operations /pseudocode: To output/print two words

Concept: Method Call: call the System Output method to print Hello World

Concept: User/System Input/Output: System Output

Concept: Program: Created as a Class HelloWorld

Concept: Executable Class: HelloWorld.java

Concept: main method: has statements

Concept: Method(s) : only main method

Concept: Statement(s): has an expression

Concept: Expressions: has a method call

Concept: method call: System.out.println("Hello World")

Concept: Data : "Hello World" used in method call

Concept: Literals/Value: "Hello World" is a String literal

Learning path : 24 concepts

Concept: Business Problem

Concept: Functional requirements : Obtain two inputs, add them, output the result

Concept: Input/Output: Input two integers, output the result

Concept: User/System Input/Output: both system, input and output

Concept: Sequence of operations /pseudocode: Method call, add, assign, method call

Concept: Arithmetic :addition- perfom input1 + input2

Concept: Assignment: assign output = input1+input2

Concept: Method Call: To get input1 and input2, To print output

Concept: Program: creates a class AddIntegers

Concept: Executable Class: create a file AddIntegers.java

Concept: main method: in the program, has statements

Concept: Method(s): only main method

Concept: Statement(s): has expressions

Concept: Expressions: method call , Arithmetic, Assignment, Declaration

Concept: Arithmetic: addition operator to add input1+ input2

Concept: Assignment:to assign values of input1, input2 and output

Concept: method call: nextInt(), System.out.println()

Concept: Declaration: declare variables input1, input2 and output as int

Concept: Syntax

Concept: Style

Concept: Comments

Concept: Variables and Constants: 3 ints

Concept: Primtive Data types: int

Concept: Data units: values of input1,input2, output

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 10

https://isedj.org/; http://iscap.info

3) Using char and String data types, int-

double type conversions, math
methods, and random numbers

4) Variables

5) Branches. Use of if-else branches.
Relational and equality operators,
logical operators.

6) Switch statements, Boolean data
types.

7) String comparison, access and modify
operations, char and conditional

expressions.
8) While loop
9) For loop, break
10) Intro to methods, parameters, and

return statements.
11) Methods with branches, loops, method

name overloading.

All the above-mentioned topics involved
exercises that identify the programming
constructs required to solve a problem.

The instructors have commonly observed that

students tend to learn the code by rote, without
being able to ‘see’ the common patterns or
inter-relatedness between concepts that occur in
the structure of the program. For example, while
writing a loop, many students fail to understand
that the looping condition is an expression that
returns a Boolean value. While Boolean

expressions were previously taught, students
may not fully integrate the past lesson into the

new concept. As a result, many try to learn the
worked out program by rote, and thereby failing
to apply what was learnt to new problem. Some
of the topics that were perceived to be most

difficult were the topics covered later in the
course such as: branches/selection, loops/
iteration, and methods. All of these topics
require mastery in applying a large number of
pre-requisite concepts.

One of the main motivations for re-designing the

course was to re-create contents that focus on
the conceptual knowledge and reasoning
required to compose a programming solution to
a given problem. The re-design would create

instructions to explicitly show the relationships
between various concepts required to create
programs.

4.2 Using the concept map to assess and
re-design the quality of instruction
An initial assessment of the course syllabus
showed that the course had the required breadth
and covered all the required concepts mentioned

in the course syllabus. Additional concepts were
added to emphasize the role of pseudocode and

various types of sequence of operations that

students had to infer from the business problem
before writing the program.

The course lectures and assignments were
investigated topic-by-topic to determine whether
they have contents that explicitly conveys the
relationships between various concepts covered
in each topic. Additional lecture slides and code
demonstrations were created to depict the
relationships between various concepts involved

in the topic. The “has” and “is a type of” phrases
were used to depict the relationships between
concepts.

To promote meaningful learning among students
the programming demos expressed a program

in-terms of its conceptual composition. All the
concepts involved in the problem statements
and the programming solutions were explicitly
explained during the demonstration. The initial
re-design of instruction had not considerably
changed the course sequence and the
programming activities. The only change was in

the instructional narrative that incorporated the
concept map and the program composition
methods that included the chaining of concepts,
as explained in Section 3.2. The newly re-
designed lectures used the concept map to bring
greater clarity to the lectures and programming
demonstrations. The programming activities

required students to reason through their
program using the chain of concepts, as shown

in Figures 5 and 6. Students were made to
complete worksheets such as the ones shown in
Figures 5 and 6.

4.3 Evaluating the impact of instruction re-
design
In order to evaluate the impact of re-designed
instruction, the learning outcomes of the re-
designed course were compared with the
outcomes from the previous semester. A scoring
matrix, as shown in Appendix D, was used in

both semesters. For comparison purposes,
scores from six similar assignments were used
to compare the outcomes of the re-designed
instruction.

Each student was scored on a scale from 0 to 5,
with 0 being the lowest score, and 5 being the

maximum score. The average scores, before and
after the course design are depicted for each
component of the score matrix shown in
Appendix D. The x–axis of each of the charts
below shows the assignment number, with
assignment 1 requiring knowledge of fewer

concepts, and assignment 6, requiring
knowledge of more concepts. Figures 7, 8, and 9

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 11

https://isedj.org/; http://iscap.info

show the score matrix items that showed an

improvement in learning gains, after the
instruction was re-designed. Scores were
obtained before and after the instructional

redesign, for 28, and 26 students, respectively.
The average class scores were rounded up to the
closest integer value.

Figure 7: Average scores of students in
their ability to write the order of
statements correctly, as required to meet
the requirements of the problem.

Figure 8: Average scores of students in
their ability to identify the correct type of
statements required to solve the problem

It can be observed from Figures 7 and 8 that the
greatest learning gains, due to the re-design of

instruction, were in the later assignments that
were more ‘dense’ and packed several concepts
into a reasoning chain. There were gains in the

student’s ability to identify and write statements
in proper order. Gains were also observed in the
ability of students to identify the proper type of
expressions required to complete statements.
However, students’ ability to write correct
expressions to complete the statements did not
show marked improvement, as depicted in

Figures 9 and 10. In most cases, the statements

were incorrect because there were mistakes in
the way the expressions were written. The
majority of the mistakes were made in complex

expressions that involved comparison and logical
operators. Mistakes were also made in method
calls.

Figure 9: Average scores of students in

their ability to write all the expressions
correctly

Figure 10: Average scores of students in
their ability to identify proper expressions
for statements.

Overall, the use of course knowledge
representation using a concept map guided the

instructor to create instructional material that
combines conceptual knowledge with the
practice of writing programs. The concept map
provides students and the instructor a common
vocabulary and representation to discuss the
concepts. By chaining various inter-related
concepts, the instructor was able to create

instructional materials that makes explicit the
systematic chains of reasoning required to
compose programs. The effect of introducing a

0

1

2

3

4

5

6

1 2 3 4 5 6

Before Re-Design After Re-Design

s
c
o
r
e

Assignment

0

2

4

6

1 2 3 4 5 6

Average Student Scores

Before-Redesign After-Redesign
Assignments

0

2

4

6

1 2 3 4 5 6

Average Student Scores

Before-Redesign After-Redesign
Assignments

0

2

4

6

1 2 3 4 5 6

Average Student Scores

Before Re-design After-Redesign
Assignments

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 12

https://isedj.org/; http://iscap.info

new concept map based instruction was

measured through assessment of weekly
assignments provided to students. The results of
the assessments provided the instructor with

useful information about the concepts and
chains of reasoning, for which improved
instruction might be required.

5. CONCLUSIONS

This paper presents the possibility of using a

concept map to represent the knowledge
composition of a course that requires students to
learn to write procedural style programs in Java.
The intent of using a concept map was to map
the knowledge composition of the course in the
form of concepts and their interconnectedness,

such that the depiction can be used to create
instructional methods that can help students to
learn how to compose programs. The structure
of the concept map can inform the course
designers about the breadth and depth of the
knowledge imparted through the course. Using
examples, the authors show how the

interrelated-ness of concepts can be used to
create chains of reasoning to explain
programming solutions to different types of
programming problems. Consequently, the
concept map also helps students to learn
meaningfully by enabling them to interconnect
various concepts to produce programming

solutions.

6. REFERENCES

Ausubel, D. P. (1963). The psychology of
meaningful verbal learning. New York:

Grune and Stratton.Ashby, W. Ross (1956).

Ausubel, D. P. (1968). Educational psychology:
A cognitive view. New York: Holt.

Ausubel, D. P., Novak, J. D., & Hanesian, H.
(1978). Educational psychology: A cognitive
view (2nd ed.). New York: Holt, Rinehart
and Winston.

Allen, B. S., Hoffman, R. P., Kompella, J., &
Sticht, T. G. (1993). Computer-based

mapping for curriculum development. In:
Proceedings of selected Research and
Development Presentations Technology
sponsored by the Research and Theory
Division. New Orleans, LA. (Eric Document

Reproduction Services No. ED 362 145).

Brusilovsky P., Sosnovsky S., Shcherbinina O.
QuizGuide: Increasing the Educational Value
of Individualized Self-Assessment Quizzes
with Adaptive Navigation Support. In Janice

Nall and Robby Robson (eds.) Proceedings of

E-Learn 2004. Washington, DC, USA: AACE,
2004, 1806-1813.

Brusilovsky P., Sosnovsky S., Yudelson M., An

Adaptive E-Learning Service for Accessing
Interactive Examples. In Janice Nall & Robby
Robson (eds.) Proceedings of E-Learn 2004.
Washington, DC, USA: AACE, 2004, 2556-
2561.

Edmondson, K. M. (1993). Concept mapping for
the development of medical curricula. Paper

presented at the Annual Conference of the
American Educational Research Association,
Atlanta, GA. (Eric Document Reproduction
Services No. ED 360 322).

Ganapathi, G., Lourdusamy, R., Rajaram, V.
(2011). “Towards Ontology Development for

Teaching Programming Language,”
presented at the World Congress on
Engineering, London, UK.

Gavrilova, T., Farzan, R., Bursilovsky, P. (2005).
”One Practical Algorithm of Creating
Teaching Ontologies”, Proceeding of the NBE
2005.

Gomez-Albarran, M., & Jimenez-Diaz, G. (2009).
Recommendation and students' authoring in
repositories of learning objects: a case-
based reasoning approach. International
Journal of Emerging Technologies in
Learning (IJET), 4, 35e40

Keppens, J. & Hay, D. (2008). Concept Map

Assessment for Teaching Computer
Programming. Computer Science Education,
18(1), 31-42.

Kumar, A. (2006). Using Enhanced Concept Map
for Student Modeling in Programming
Tutors.. FLAIRS 2006 - Proceedings of the

Nineteenth International Florida Artificial
Intelligence Research Society Conference.
527-532.

Lee, J. H., & Segev, A. (2012). Knowledge maps
for e-learning. Computers & Education,
59(2), 353e364.

Mabbott, A., Bull, S. (2004). Alternative Views

on Knowledge: Presentation of Open Learner
Models. In Lester, J.C., Vicari, R.M.,
Paraguacu, F. (eds.), Intelligent Tutoring
Systems: 7th International Conference,
Springer-Verlag, Berlin Heidelberg, 689-698.

Novak, J. D. & Gowin. D (1984). Learning How
to Learn. Cambridge University Press.

Novak, J. D. (2002). Meaningful learning: the
essential factor for conceptual change in

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 13

https://isedj.org/; http://iscap.info

limited or appropriate propositional

hierarchies (liphs) leading to empowerment
of learners. Science Education, 86(4),
548e571.

Novak, J. D., & Canas, A. J. (2008). The theory
underlying concept maps and how to
construct them. Technical report IHMC
CmapTools 2006-01 Rev 01-2008. Florida
Institute for Human and Machine Cognition.

 O'Donnell, A. M., Dansereau, D. F., & Hall, R.
H. (2002). Knowledge maps as scaffolds for

cognitive processing. Educational Psychology
Review, 14(1), 71e86.

Sosnovsky, S., & Gavrilova, T. (2006).

Development of educational ontology for C-
programming. International Journal
Information, Theories & Applications, 13(4),

303e307.

 Swartout, B., Patil, R., Knight, K., Russ, T.
Toward Distributed Use of Large-Scale
Ontologies, Ontological Engineering. AAAI-
97 Spring Symposium Series, 1997, 138-
148.

Wang, J., & Mendori, T. (2012). A course-

centered ontology of japanese grammar for
a language learning support system.
Frontiers in Artificial Intelligence and
Applications (KES2012), 243, 654e663.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 14

https://isedj.org/; http://iscap.info

Appendix A

Figure A. Tree-like structure of an educational ontology for C-Programming (Sosonovsky &
Gavrilova, 2006)

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 15

https://isedj.org/; http://iscap.info

APPENDIX B

Figure B. Concept Map of an Introductory Java Programming Course

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 16

https://isedj.org/; http://iscap.info

APPENDIX C

A. Objectives of the Course:

Upon completion of this course the student will be able to do the following items using the presently adopted
language for this course (Fall 2010: Java):

a) Analyze business case studies and discuss strengths and weaknesses of various potential solutions.
b) Recognize and use problem solving techniques and methods of abstract logical thinking to develop

and implement structured solutions of given software design problems.
c) Apply problem solving techniques and design solutions to business problems and implement these

solutions by writing computer programs.
d) Write well-structured business programs.
e) Evaluate and debug programs.
f) Work in collaborative groups.

B. Catalog Description:

This course provides students with an understanding of business problems that are typically solved by writing
computer programs, problem solving techniques to enable students to design solutions and programming
skills learned in a traditional CS1 course. Emphasis is placed on efficient software development for business
related problems. Students are required to write, test and run programs. Prerequisite: High School Algebra or
Equivalent. Three credits.

C. Outline of the Course:

a) Problem Solving Techniques for Business Problems
i) Business Case Studies
ii) Problem Identification and Understanding
iii) Solution Planning (flowcharts, pseudo-code, etc.)
iv) Algorithm Development

b) Programming Concepts

i) Structure of a Program (“Hello World”)
ii) Constants, variables and data types
iii) Arithmetic operators
iv) Relational operators
v) Logical operators
vi) Assignment statements
vii) Input and output
viii) Selection (if/else and switch)
ix) Repetition (while, do/while, and for)

c) Strings

d) File Processing

e) Functions (in presently adopted language, “method’’)

Figure C. A portion of the prescribed syllabus of the Introductory Programming course.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 18 (3)
ISSN: 1545-679X June 2020

©2020 ISCAP (Information Systems and Computing Academic Professionals) Page 17

https://isedj.org/; http://iscap.info

APPENDIX D

Figure D: A sample rubric used to evaluate the learning outcomes of each student in a
programming course. This rubric is used to measure a student’s ability to write correct
programs that meet the requirements of a given business problem.

Student is able

to write

 the order of

statements

correctly, as

 required to

meet the

requirements of

the problem

Student is able

to identify

 the correct

type of

statements

required to

solve the

problem

Student is able

to

identify the

correct type of

expressions to

compose the

statements

Student is

able to

 write all the

expressions

correctly

Student is

able to

correctly

identify the

 variables

and its data

types

required

 to capture

the data in

the problem

Student is

able to

obtain the

required

inputs, as

required by

the problem

Student is able

to correctly

output data as

per the

problem

requirements

Assignment 1:

 simple input Assignment 2:

Statements

with

 expressions,

input and

output

Assignment 3:

Statements

with

variables,expr

essions, input

and output

Assignment 4:

Statements

with if.else /

switch ,

variables,

expressions,

input and

output

Assignment 5:

Statements

with various

types of

loops,variable

s,

expressions,

inputs and

outputs

Assignment 6:

Statements

with if..else,

loops,

variables,

expressions,

inputs and

outputs

